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THE EFFECT OF HYDROGEN ANNEALING ON THE
OXIDATION RESISTANCE OF FOUR EPM SINGLE

CRYSTAL SUPERALLOYS

James L. Smialek, Charles A. Barrett, and Ralph G. Garlick
National Aeronautics and Space Administration

Glenn Research Center
Cleveland, Ohio 44135

SUMMARY

Four single crystal EPM developmental airfoil superalloys were hydrogen annealed at 1300 °C for up to
100 hr to remove sulfur and improve oxidation resistance. Although the 1100 and 1150 °C cyclic oxidation
resistance was remarkably improved by annealing for 24 or 100 hr, the behavior was still considerably inferior
to that of commercially available single crystal superalloys, especially those that are either Y-doped or hydro-
gen annealed. Excessive degradation in the developmental alloys appeared to be correlated with low Cr con-
tents and, to a lesser extent, high Co and Re contents.

INTRODUCTION

The oxidation resistance of single crystal superalloys has improved greatly over the last decade. The addition of
high levels of tantalum appears to be associated with slow growing mixed scales of CrTaO4 and NiTa2O6 with the
more commonly observed Al2O3 and Ni(Al,Cr)2O4 phases formed on oxidation resistant NiCrAl alloys. Further-
more, the addition of Hf (PWA 1484, Rene'N5, and CMSX 4) and Y (PWA 1487 and Rene'N5) produce even
greater oxidation resistance by the well known reactive element effect. The role of bulk sulfur content and sulfur
segregation in Al2O3 scale adhesion has also been the topic of many studies. In the past ten years, a number of
hydrogen annealing studies have shown that desulfurization of superalloys from 10 ppmw S down to 0.1 ppmw S is
readily possible and that the resultant oxidation resistance is comparable to Y-doped alloys, many of which are
covered in a recent review article (ref. 1).

Since the EPM turbine airfoil alloy development program was primarily directed toward improved high
temperature mechanical properties, Y additions were postponed to a later date, and scale adhesion issues for the
uncoated alloys were not specifically addressed. The purpose of this study is to provide baseline cyclic oxidation
resistance of early EPM alloys and to demonstrate what level of improvements are possible through desulfurization
by hydrogen annealing. A concurrent objective is to determine what annealing schedule is necessary for sufficient
desulfurization. The response of desulfurized alloys in cyclic oxidation tests should be indicative of the level of
improvements that can be achieved with Y additions.

MATERIALS AND EXPERIMENTAL PROCEDURES

EPM alloys #29, 35, 39, and 41 were obtained from excess slab material cast at EMTL, GE Aircraft Engines.
The nominal (target) compositions are shown in table I (ref. 2). The slab material was EDM machined into 1-mm
thick coupons with surface dimensions of about 1/4 by 1/2 to 1 in. (0.6 by 1.2 to 2.0 cm) and polished to a 600 grit
finish. Duplicate samples were annealed in a 5 percent H2/Ar atmosphere (<1 ppm H2O) at 1300 °C for 4, 24, and
100 hr.

All of the duplicate samples were tested in cyclic oxidation using 1 hr at temperature and 20 min cooling to
about 60 °C. Duplicate samples of each alloy were oxidized in the as-received condition, (with a 600 grit finish), and
after annealing for 4, 24, and 100 hr. The annealed samples were tested in the as-annealed condition, except for alloy
29; here one of the duplicate annealed samples was repolished to a 600 grit finish before oxidation, removing an
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average of 7.2 mg/cm2 or an 8 mm (1/3 mil) layer, assuming a density of about 9 gm/cm3. Samples of alloys #29
and #35 were cyclic furnace oxidation tested at 1150 °C for 80 to 100 hr, when severe weight loss necessitated
termination of the test. Alloys #39 and #41 were oxidized at either 1150 °C for 100 hr or at 1100 °C for 200 hr.
Weight changes were recorded throughout the test. The oxide scale phases formed on the oxidized coupons were
analyzed by X-ray diffraction.

RESULTS

Hydrogen Annealing

The annealing process produced average weight changes of only +0.001, and – 0.010 mg/cm2, respectively, for
the three annealing times. All samples were extremely reflective and metallic in appearance after annealing,
indicating that no oxide scale formed during annealing. Therefore, no barrier layer existed and desulfurization should
have proceeded as expected.

Cyclic Oxidation Weight Change

The specific weight change data for 1150 °C cyclic oxidation of alloy #29 is shown in figure 1. Rather severe
weight losses were exhibited for all the samples. No differences were noted between samples tested with the as-an-
nealed surface condition and those re-polished to a 600 grit surface finish. Hydrogen annealing at 1300 °C for 24 to
100 hr did reduce the weight loss somewhat from 180 to 190 mg/cm2 down to 110 to 135 mg/cm2. However, essen-
tially all the annealing times were ineffective in producing a truly protective scale at 1150 °C, despite some
improvement. In comparison, second generation SX superalloys, Rene’N5 and PWA 1484, with either Y–doping or
hydrogen annealing, gain <1 mg/cm2 after 1000 1-hr cycles to 1150 °C (refs. 3 to 5).

The weight change data for 1150 °C cyclic oxidation of  alloy #35 is shown in figure 2. Again large weight
losses (100 mg/cm2) were exhibited by the as-received samples test for only 100 hr at 1150 °C, but these were
somewhat less severe than those obtained for alloy #29. Furthermore, a more significant effect of 24 and 100 hr
hydrogen annealing occurred for alloy #35, decreasing the weight loss to only 15 to 18 mg/cm2 after 100 hr of
oxidation. Identical behavior was displayed by the duplicate samples, both tested in the as-annealed surface
condition.

The 1150 °C data for alloys #39 and #41 are shown in figures 3 and 4, respectively. Both alloys show similar
performance, falling between those of the previously discussed alloys. The duplicate samples of these alloys were not
tested as pairs. Rather, because of the poor overall performance and absence of any surface condition effects, these
duplicate samples were tested at a less severe temperature to produce more meaningful results. Accordingly, the
results of 1100 °C cyclic oxidation testing is shown in figures 5 and 6. Although both as-received alloys still
exhibited substantial weight loss (>150 mg/cm2), alloy #39, when hydrogen annealed for 24 or 100 hr, achieved a
weight loss of only 6 mg/cm2 after 200 hr at 1100 °C.

The comparative behavior of the four alloys can be readily assessed in figures 7 and 8, where the final weight
change from the 1150 and 1100 °C tests (for as-annealed surfaces) are plotted as a function of hydrogen annealing
time. A number of points are clear from this figure: (1) hydrogen annealing at 1300 °C produced substantial
improvements for all the alloys; (2) alloys #35 and #39 are superior to alloys #41 and #29 after hydrogen annealing;
and (3) hydrogen annealing for 24 hr produced most of the benefit, with little further improvement demonstrated for
100 hr annealing.

X-ray Diffraction

No initial protective scales were preferentially formed from the hydrogen annealing process. The scale phases
present at the end of the oxidation test were characterized by X-ray diffraction on a select number of specimens. The
results are summarized in table II. The major scale phases were NiO, NiTa2O6, and Ni(Al,Cr)2O4 spinel. Very little
Al2O3 was identified, primarily because of the masking effect of the other heavily absorbing oxide phases and the
severity of attack sustained at the end of testing. Thus, the protective nature of the scale was limited. Surprisingly,
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no trend in scale type was observed as a function of performance (annealing time or alloy composition). It should be
noted that the lattice parameter of NiAl2O4 is 8.05Å, and that for NiCr2O4 is 8.30Å. Thus the observed spinel
represents a mixed composition somewhat closer to nickel aluminate than to nickel chromate.

Alloy Composition Effects

The major compositional variations in this set of four alloys occur for Cr, Co, Ru, and Re (table I). These are
also the elements that have substantial differences in level from those in the two commercial alloys listed. The
alloys are also ranked according to the final weight changes. This ranking remained relatively consistent for all the
hydrogen pre-anneals, as well as for the as received material, figure 7. (The weight change data in table I is that for
100 hr oxidation at 1150 °C, for EPM samples having 100 hr hydrogen annealing at 1300 °C, and for the
commercial alloys annealed at 1250 °C for 50 to 100 hr.). There is only one compositional change in going from
the best to second best alloy (#35 to #39, i.e., an increase in Co from 5 to 20 percent. In surveying an extensive
database for Ni(Co) superalloys, there is rarely any correlation with performance and Co content, (ref. 6).

A more significant performance loss is incurred in going from alloys #39 to #41 by reducing Ru from 4.5 to
1.5 percent. And finally, the worst performance of alloy #29 is obtained by reducing Cr from 2.3 to 1.5 percent,
decreasing Ru from 1.5 to 1.0 percent, and increasing Re from 5.7 to 6.25 percent. There is some reasonable
precedent to suggest that low Cr can be deleterious, in that some Cr is needed to assist in a transient oxidation
period during which a protective Al2O3 scale is being built up. Cr has been weakly correlated with improved cyclic
oxidation resistance in superalloys overall, but generally at levels higher than 5 percent (ref. 6). Previous EPM
experience (Dr. Jon C. Schaeffer) would indicate that Cr and Ru may act in concert to produce beneficial effects.

However these performance changes must be evaluated in the context of the excellent performance of current
oxidation resistant single crystal alloys, containing 5 to 7 percent Cr, 8 to 10 percent Cr, 3 percent Re, 5.6 to
6.2 percent Al, and no Ru. For example, weight loss of only 5 to 7 mg/cm2 were achieved for as-received Rene'N5
and PWA 1484 (without Y) after 100 hr of cyclic oxidation at 1150 °C or with weight gains of only 0.6 to
2 mg/cm2 after 1000 hr for hydrogen annealed Rene'N5 and PWA 1484 (refs. 3 to 5). Similar results were obtained
for 1100 to 1200 °C tests of hydrogen annealed PWA 1480 and CMSX-4 (refs. 7 to 9).

These alloys possess substantial compositional differences with the four EPM alloys, as presented in table I.
The most critical difference is believed to be the Cr content, which is only 1.5 to 2.3 percent for the EPM alloys
compared to 5 to 6 percent in current single crystal superalloys. Aluminum content is always very important, and
the EPM alloys do contain 5.5 percent Al. The Co levels at least overlap current alloys, but 20 percent Co appears
to be relatively high. The Re levels did not vary appreciably in the four alloy set, but are considerably higher than
present alloys, which contain 3 percent. Finally, higher Ru levels were identified in the best EPM alloys, but no Ru
is present in the superior conventional single crystal alloys. Thus Ru may help in the EPM alloys, but is not
needed for the good oxidation resistance of current superalloys.

In summary, low Cr levels are believed to have had the most detrimental effect on oxidation resistance. Also,
high Re may have degraded performance.

Sulfur Content

The sulfur contents were not measured, but the trend with hydrogen annealing could be estimated from the thin
slab diffusion equation, as demonstrated previously (ref. 3). Assuming sulfur diffusion control of desulfurization, the
thin slab diffusion solution provides the following approximation (for values of
Dt/L2 >0.05):

Cs/Co = 8/p2 exp(–p2Dst/L
2) (1)

where Cs and Co are the final and original average sulfur contents (<<1 percent), Ds is the diffusion coefficient of
sulfur in nickel, t is time, and L is thickness. The results of the two best oxidation runs (#35 at 1150 °C and #39 at
1100 °C) are shown in figure 9 as a function of the estimated sulfur content, as determined for the various annealing
times. Here the oxidation response can be seen to steadily improve as the estimated sulfur content falls below
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1 ppmw, assuming a starting level of 6.3 ppmw. (This sulfur level was taken from a previous study of Rene’142
(ref. 3), more recent studies show sulfur levels of 2.6 ppmw for Rene’N5 [5].)

(It should be noted that the 100 hr anneal would not actually produce the calculated level of 10–12 ppm sulfur.
Hydrogen annealing has been known to produce a minimum as low as 0.01 ppmw sulfur, but usually about
0.1 ppmw, both of which are nonetheless very low. In any event, the conclusion reached from this type of plot is
that the major effect of desulfurizing a 1-mm thick coupon, as determined in cyclic oxidation tests, occurs at
durations between 4 and 24 hr of hydrogen annealing.)

The plot is consistent with published summaries of hydrogen annealed superalloys which showed diminishing
returns below about 0.1 to 0.3 ppmw. This is also about the level that is equivalent to one monolayer of sulfur, if
all the bulk impurity were to segregate to the interface (refs. 3, 4, and 10). Finally, it is very similar in form to plots
of weight change versus calculated and actual sulfur content for PWA 1480 (refs. 4 and 11). But in these studies the
1100 °C oxidation resistance was much better overall, such that the final weights attained after 1000 1-hr cycles were
+0.5 to +1 mg/cm2.

CONCLUSIONS

This screening study has shown that some representative EPM single crystal alloys presently possess
significant debits compared to the oxidation resistance of commercially available superalloys. It is believed that the
single most important cause of this debit is the low Cr content, with lesser contributions possible from the high Co
and Re contents. Nonetheless, hydrogen annealing (desulfurizing) did have a strong positive effect, suggesting that
low sulfur alloys and Y additions would provide some useful benefits to the oxidation behavior of this class of
alloys. However these modifications would not produce oxidation resistance comparable to that of current second
generation single crystal superalloys.
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TABLE I.—NOMINAL CHEMISTRIES (wt %) OF FOUR SAMPLE EPM DEVELOPMENTAL
SINGLE CRYSTAL AIRFOIL SUPERALLOYS AND TWO COMMERCIAL ALLOYS.

ORDERED ACCORDING TO WEIGHT CHANGE AFTER 100 1-hr CYCLES AT
1150 °C FOR EPM SAMPLES THAT WERE HYDROGEN ANNEALED AT

1300 °C FOR 100 hr, AND FOR COMMERCIAL ALLOYS HYDROGEN
ANNEALED AT 1250 °C FOR 50 TO 100 hr

Commercial
alloy

Al Ta Cr Co Ru Re W Mo Ti DW/A1150 °C, 100 hr,
mg/cm2

Rene'N5 6.2 7 7 8 0 3 5 2 0 0.6
PWA 1484 5.6 9 5 10 0 3 6 2 0 0.6

EPM alloy
 #35 5.5 8.3 2.3 5.0 4.5 5.7 5.6 2.0 0.4 –14.9
 #39 5.5 8.3 2.3 20.0 4.5 5.7 5.6 2.0 0.4 –22.7
 #41 5.5 8.3 2.3 20.0 1.5 5.7 5.6 2.0 0.4 –64.5
 #29 5.6 8.0 1.5 20.0 1.0 6.2 6.0 2.0 0.0 a(–160)

aExtrapolated.

TABLE II.—SUMMARY OF SCALE PHASES FORMED AFTER CYCLIC OXIDATION
Alloy #35
600 grit

Alloy #39
as-annealed

Alloy #41
as-annealed

1150 °C, 100 hr 1150 °C, 100 hr 1150 °C, 100 hr
1300 °C anneal time
0 hr N(p), N–T, S(8.10) N–T, N, S(8.10) N, N–T, S(8.10)
4 hr N(p), N–T, S(8.10) N–T, N, S(8.10) N–T, N, S(8.10)
24 hr N(p), N–T, S(8.10) N, N–T, S(8.10) N–T, N, S(8.10)
100 hr N(p), N–T, S(8.10), A N, N–T, S(8.10) N–T, N, S(8.10)

1100 °C, 200 hr 1100 °C, 200 hr
1300 °C  anneal time
0 hr N(p), S(8.20), N–T N, N–T, S(8.10)
4 hr N(p), S(8.15), N–T N, N–T, S(8.10)
24 hr N(p), S(8.20), N–T N, N–T, S(8.10)
100 hr N(p), S(8.20), N–T N, N–T, S(8.10)
N = NiO A = Al2 O3

N–T = NiTa 206 (p) = preferred orientation
S = Ni(Al,Cr)2 O4 (8.10) = ao
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Oxidation time, 1 hr cycles

Alloy 29,
1150 °C

Figure 1.—Effect of hydrogen annealing times on the oxidation resistance of alloy #29.
   (1150 °C, 1 hr cycles). As-annealed surface condition (dashed lines) shows little
   difference with 600 grit polished surfaces (solid lines).
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Figure 2.—Effect of hydrogen annealing times on the oxidation resistance of alloy #35.
   (1150 °C, 1 hr cycles). As-annealed surface (dashed lines); similar behavior of duplicate
   samples.
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Alloy 39,
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Figure 3.—Effect of hydrogen annealing times on the oxidation resistance of alloy #39.
   (1150 °C, 1 hr cycles; dashed lines:  as-annealed surfaces).

Figure 4.—Effect of hydrogen annealing times on the oxidation resistance of alloy #41.
   (1150 °C, 1 hr cycles; dashed lines:  as-annealed surfaces).
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Oxidation time, 1 hr cycles

Alloy 39,
1150 °C

Figure 5.—Effect of hydrogen annealing times on the oxidation resistance of alloy #39.
   (1100 °C, 1 hr cycles; dashed lines:  as-annealed surfaces).

Figure 6.—Effect of hydrogen annealing times on the oxidation resistance of alloy #41.
   (1100 °C, 1 hr cycles; dashed lines:  as-annealed surfaces).
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1300 °C H2 anneal
1150 °C oxidation
As-annealed surfaces

1300 °C H2 anneal
1100 °C oxidation
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Figure 7.—Effect of alloy type and hydrogen annealing times on the final weight change
   of EPM alloys. (1150 °C, 1 hr cycle oxidation; 1300 °C annealing, as-annealed surfaces).

Figure 8.—Effect of alloy type and hydrogen annealing times on the final weight change
   of EPM alloys. (1100 °C, 1 hr cycle oxidation; 1300 °C annealing, as-annealed surfaces).
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( ) = anneal time, hours

Figure 9.—Correlation of final weight change with the predicted sulfur content of
   hydrogen annealed EPM alloys. (1300 °C anneal, as-annealed surfaces, 6.3 ppmw
   initial sulfur assumed).
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Four single crystal EPM developmental airfoil superalloys were hydrogen annealed at 1300 °C for up to 100 hr to
remove sulfur and improve oxidation resistance. Although the 1100 and 1150 °C cyclic oxidation resistance was
remarkably improved by annealing for 24 or 100 hr, the behavior was still considerably inferior to that of commercially
available single crystal superalloys, especially those that are either Y-doped or hydrogen annealed. Excessive degradation
in the developmental alloys appeared to be correlated with low Cr contents and, to a lesser extent, high Co and Re
contents.
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